- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Brocca, Luca (2)
-
Alvarez, Laura V (1)
-
Bell, Andrew (1)
-
Cai, Shuohao (1)
-
Chen, Fei (1)
-
Chen, Liang (1)
-
Cheng, Rui (1)
-
Cheng, Xinghua (1)
-
Cook, Benjamin I. (1)
-
Dorigo, Wouter (1)
-
Du, Jinyang (1)
-
El_Masri, Bassil (1)
-
Endsley, K Arthur (1)
-
Fang, Yilin (1)
-
Fisher, Joshua B (1)
-
Hanasaki, Naota (1)
-
Hu, Jie (1)
-
Huang, Jingyi (1)
-
Jain, Meha (1)
-
Jampani, Mahesh (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Huang, Jingyi; Sehgal, Vinit; Alvarez, Laura V; Brocca, Luca; Cai, Shuohao; Cheng, Rui; Cheng, Xinghua; Du, Jinyang; El_Masri, Bassil; Endsley, K Arthur; et al (, Water Resources Research)Abstract This paper reviews the current state of high‐resolution remotely sensed soil moisture (SM) and evapotranspiration (ET) products and modeling, and the coupling relationship between SM and ET. SM downscaling approaches for satellite passive microwave products leverage advances in artificial intelligence and high‐resolution remote sensing using visible, near‐infrared, thermal‐infrared, and synthetic aperture radar sensors. Remotely sensed ET continues to advance in spatiotemporal resolutions from MODIS to ECOSTRESS to Hydrosat and beyond. These advances enable a new understanding of bio‐geo‐physical controls and coupled feedback mechanisms between SM and ET reflecting the land cover and land use at field scale (3–30 m, daily). Still, the state‐of‐the‐science products have their challenges and limitations, which we detail across data, retrieval algorithms, and applications. We describe the roles of these data in advancing 10 application areas: drought assessment, food security, precision agriculture, soil salinization, wildfire modeling, dust monitoring, flood forecasting, urban water, energy, and ecosystem management, ecohydrology, and biodiversity conservation. We discuss that future scientific advancement should focus on developing open‐access, high‐resolution (3–30 m), sub‐daily SM and ET products, enabling the evaluation of hydrological processes at finer scales and revolutionizing the societal applications in data‐limited regions of the world, especially the Global South for socio‐economic development.more » « lessFree, publicly-accessible full text available May 1, 2026
An official website of the United States government
